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We present experimental results on the modified Stokes force F exerted on a sphere 
in magnetic levitation whose position is kept fixed by an optical feedback system. 
A Newtonian liquid moves at a constant velocity U relative to the sphere. We 
consider the motion in two different situations. 

( i )  When the sphere approaches a wall perpendicular to U, the increase in 14 due 
to lubrication agrees quantitatively with theoretical results such as those of Brenner 
(1961) and Maude (1961), obtained neglecting the unsteadiness of the flow field. 

(ii) In the complementary situation of a sphere moving along the axis of a 
cylindrical tube, our results expressed as a function of the eccentricity of the 
trajectory and of the ratio of the two radii confirm and extend previous theoretical 
analyses. They show in particular the existence of a minimum of 14 away from the 
axis of the cylinder and a sharp increase in 14 when the sphere approaches the 
sidewall. By comparing with the results for a sphere moving parallel to a flat wall, 
we analyse the effect of the curvature of the cylindrical tube. 

1. Introduction 
A logical first step towards the elucidation of the hydrodynamic behaviour of 

suspensions of spherical particles is the study of the hydrodynamic interactions 
between individual particles, of particle motion in the presence of bounding walls and 
of combinations of these two events. The interactions are caused by the long-range 
velocity distribution generated in’the fluid surrounding each moving particle ; they 
control the distribution of the particles. In turn, the distribution itself determines 
the dynamical behaviour of each individual particle. 

For instance, in sedimentation the average speed of fall of a particle depends on 
concentration; the dependence, mainly due to the hydrodynamic interactions, was 
studied theoretically by Batchelor (1972). 

A major difficulty in the experimental determination of these interactions comes 
from the absence of control of the spatial location of each particle within the bed of 
particles or near fixed walls, as the particles move under an external force field or 
in an imposed velocity field. 

In this paper we describe an original method for the measurement of the 
hydrodynamic force impressed on an individual sphere when the law of displacement 
is imposed externally. 

The technique had been introduced in our laboratory as a rheometric method to 
study the viscosity and elasticity during a gelation process (Gauthier-Manuel & Guyon 
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FIGURE 1. Experimental apparatus: M, magnetic sphere; C, levitation coil; (GI, C2), deviation coils; 
PD, four-quadrant photodiodes ; S, lamp source; L, microscope objective ; T, tube. 

1980) ; a technical description of the sphere rheometer is given in Gauthier-Manuel, 
Meyer & Pieranski (1984). It was first used by Ambari, Gauthier-Manuel & Guyon 
(1983) in the context of the present project to study the effect of a plane wall on the 
hydrodynamic force exerted on a sphere moving parallel to it a t  a constant velocity. 
The results were compared with the theoretical models of O’Neill (1964), O’Neill & 
Stewartson (1967), Goldman, Cox & Brenner (1967) and Fax& (1921). The results 
are summarized in $4 of this paper. 

In  $3 we present experimental results on the hydrodynamic force exerted on a 
sphere moving towards a plane wall a t  a fixed velocity. The method leads to a 
continuous measurement of the variation of the force. This study was made a t  
different low Reynolds numbers Re - The results are compared with the 
theoretical calculations of Maude (1961) and Brenner (1961 ). The present study deals 
with hydrodynamic wall effects a t  small separations, but could easily be extended 
to a sphere approaching a surface of spherical or cylindrical shape. Such wall effects 
play an essential role in the dynamical behaviour of non-dilute suspensions, as 
stressed in particular by de Gennes (1981) in the study of plug flow of such suspensions. 
It is also of direct importance in problems of aggregation of particles or in their 
capture (filtration). 

In $4 we present some original experimental results on the variation of the 
hydrodynamic force exerted on an eccentrically positioned sphere in a circular 
cylindrical tube filled with a Newtonian fluid. The displacement of the sphere takes 
place without rotation in the axial direction; the force is measured as a function of 
the eccentricity and of the reduced diameter of the sphere. The study provides a direct 
verification of the theoretical predictions of Brenner & Happel (1958). As far as we 
know, there is no other direct quantitative experimental data in the literature 
concerning this problem. A striking result obtained is that  the drag force decreases 
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F~CURE 2 .  Photograph of a sphere of diameter 2a = 1.0 mm near a vertical plane P 

and goes through a minimum as the sphere moves away from the tube axis. The 
results are also compared with the theoretical calculations of Tozeren (1983) for small 
eccentricities in a more limited range of parameters. Applications of this last study 
are numerous, and range from falling-ball viscosimeters, capillary blood flow to flow 
of particles in porous materials, which are often visualized as a bundle of tubes. 

2. Experimental 
2.1. The sphere rheometer 

The sphere rheomcter was initially built to study the viscous and elastic behaviour 
during the formation of transparent gels. A first application to the study of the 
viscous behaviour of spheres in limited geometries was described in Ambari et al. 
(1983), and a detailed description of the experimental set-up can be found in 
Gauthier-Manuel et al. (1984). We will only recall its essential elements. 

Figure 1 is a schematic view of the apparatus. It uses a magnetic sphere maintained 
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in a fixed position by magnetic levitation (figure 2) within a mobile experimental cell 
containing a Newtonian fluid of viscosity 7 (Rhodorsil silicone oil). The vertical 
stability of the sphere (M) is obtained using a feedback loop. A microscope objective 
(L) forms the image of the sphere, lit by a 15 W lamp source (S), on a differential 
photodiode (PD). The difference of the area of the shadow of M between the quadrants 
of the upper and lower halves of the photodiode when the sphere moves vertically 
from its central position is amplified into a control current, which is sent into a 
levitating coil (C), which provides a vertical magnetic induction B,. The vertical force 
on the sphere of magnetization is 

F,, = p'VB,. 

The induction field B also ensures horizontal radial equilibrium of the sphere. 
I n  static conditions the magnetic force F,, exactly balances the apparent weight 

of the sphere (corrected by buoyancy). When the cell (tube T on figure 1) moves at 
a constant vertical velocity U,, a hydrodynamic friction force F, adds to or subtracts 
from the apparent weight, depending on the sign of U,. The control current varies 
to keep the sphere fixed. This variation is proportional to the hydrodynamic force, 
which, for a cell of dimensions large compared with that of the sphere, is the Stokes 

(2.1) 
result : Fs = 6~7aU,,  

where a is the radius of the sphere. 
The electronic time constant ( -  s) (see Gauthier-Manuel et al. 1984) is always 

shorter than the convective timescale a /U,  ( N 10 s). I n  non-stationary cases, like the 
near approach of a sphere to  a wall, the spacing of the data points (as given on figure 
5 )  is limited by that ofthe acquisition chain (20 ms), and there is no reason to  expect 
an appreciable effect of the electronic response for such data. 

The control current is recorded continuously using a programmable multichannel 
analyser (Tracor) with an  accuracy of 1 yo. 

The horizontal position of the sphere can be controlled using a pair of Helmholtz 
coils (Cl, C,) of horizontal axis mounted in opposition, which provides a constant 
gradient of induction near the centre 0 of the cell. The constant horizontal force Fmy 
opposes the restoring horizontal force due to  the field in the coil (C). The equilibrium 
distance c from the centre of the sphere to 0 is an increasing function of the current 
in the coils (Cl, C2). 

2.2. Calibration 

The photodiode system (PD) has four quadrants and can also be used to determine 
the difference in intensity of light due to  a horizontal displacement of the shadow 
of the sphere. We have checked that the detection of the horizontal displacement c 
of the sphere is linear to better than 0.7 % for a value of c lower or equal to 40 yo of 
its radius (c = 0.17 mm for a sphere of diameter 0.87 mm). The sensitivity of the 
detection of 1 mV per pm is large, and suitable for very small displacements. For larger 
displacements, we use the direct measurement of the voltage VB applied to the coils 
(Cl, C,). Figure 3 gives VB as a function of the reduced distance e = c / R  measured 
from photographs. In  experimental conditions (radius a = 0.6 mm, radius of the tube 
T R = 5 mm), a good linearity is obtained up to a value of c = 4.4 mm corresponding 
to  the contact of the sphere with the tube. 

The vertical displacement of the cell is known with an  accuracy of 1 pm using a 
displacement gauge attached to it. Absolute displacements have also been obtained 
from photographs, using the accurately known sphere radius for calibration. 

The temperature of the cell is regulated to 25 f 0.1 "C by circulating water from 
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FIQURE 3. Measurement of the voltage V, applied to the coils (Cl, C,) plotted as a function of the 
reduced distance to the axis e = c / R ,  measured from photographs (for R = 5mm and 
k = a / R  = 0.12). 

a thermostatic bath in a jacket surrounding the cell to avoid thermal-convection 
effects which could be induced in the cell by the lamp source. The heat dissipated 
by induction in the sphere is also totally negligible with the horizontal and vertical 
fields used ( -  T). We may note, however, that  (as suggested by a 
referee) the study of the variation of the Stokes force for larger heating current could 
provide original information on the convection currents within such a cell. At this 
temperature, the kinematic viscosity of the Rhodorsil silicone oil used (47 V 100) is 
v = lo-* m2 s-l. 

2.3. Rotation of the sphere 
The sphere is equivalent to a magnetic moment ,u attached to the sphere which aligns 
along the induction field B under the influence of a magnetic torque r, = ,u x B. I n  
most experimental situations, a hydrodynamic torque r, accompanies the hydro- 
dynamic Stokes force F,. As we only want to study the linear relation between the 
velocity U, and the force without influence of the rotation of the sphere we must make 
sure that no appreciable rotation is obtained. 

Using an estimate of r, M 2 x lo-* N m and the results of the theoretical calcula- 
tion given in $4.2, we find an equilibrium angle of rotation given by sin 0 = rZ;/pB.  
For ,u x J T-l, B = 2 x lop3 T. The rotation angle 0 x 10+ rad is very small, 
and no permanent rotational motion should take place. 

and 

3. Effect of a plane wall on a sphere moving perpendicular to it 
I n  this section we consider the effect of a plane wall on the hydrodynamic force 

exerted on a sphere moving towards it. We record continuously the increase of the 
force when the sphere moves towards the plane with a constant speed a t  a low 
Reynolds number. 
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FIGURE 4. Sketch of the geometry of the experiment dealing with 
a sphere approaching a horizontal plane P.  

3 .1 .  Formulation of the problem 

Figure 4 gives the geometry of the experiment. The sphere moves a t  a fixed velocity 
U ,  towards the rigid plane (x = 0) ,  the upper half-space (x > 0) being filled with a 
Newtonian fluid of known viscosity 7 (this description is given in a reference frame 
moving a t  a velocity- U, with the plane which is the bottom wall of the cell; in an 
absolute reference frame, the sphere is fixed). The problem is geometrically unsteady 
due to the linear variation of the distance d (and of b = d + a )  with time. We defer 
the discussion to the end of the paragraph and assume first that a quasi-static solution 
applies (DV/Dt = 0). A correction factor S(e) (where e = d / a )  in the Stokes force has 
been obtained independently by Maude (1961) and Brenner (1961) using bipolar 
coordinates which had been used first by Stimson & Jeffrey (1926) : 

I?,(€) = 6 ~ p U , S ( e )  (3 .1)  

O0 n(n + 1 ) 2 sinh (2n + 1 )  a + (2n + 1 ) sinh 2a 
(2n- 1 )  (2n + 3 )  4 sinh2 (n  + +) a - (2n + l)z sinh2 a -11, (3 .2)  

?z - S(e) = $ sinh a 

where 
a = cosh-'(l + e ) .  

The expression (3.2) reduces to the result obtained by Lorentz (1907) for large 
separations ( E  % 1) 

(3 .3)  

and to that attributed to Taylor in the lubrication limit e--0 

S(€) 2: € - I ,  (3 .4)  
which can be derived from the asymptotic expansion of (3 .2)  given by Cox & Brenner 
(1967) 

S(e) 2: e-' ( 1  -$lne+0.9712e). ( 3 . 5 )  
6 + O  

Let us  consider more closely the condition of validity of quasi-static flows. The 
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problem is geometrically unsteady owing to the variation of the distance d.  I n  the 
Navier-Stokes equation a terms au/at must be added to the convective acceleration 
( u - V )  v .  The existence of the two terms implies that the direction of motion of the 
sphere with respect to the plane does not just change the sign of the force as i t  would 
do in a time-reversible Stokes solution. 

The condition of quasi-static flow was expressed by Cox & Brenner (1967) in the 
form c Re 4 1 .  The condition can be found by expressing that the velocity field in 
the gap created by the relative motion of the sphere with respect to the wall must 
establish itself by viscous diffusion in a time characteristic of the non-stationary flow 
d/U, .  Taking the distance as d we get the condition 

d 2 / v  4 d / U ,  

or RP( = [ J z u / v )  4 e-’. (3.6) 

On the other hand, in the lubrication limit (c 4 l ) ,  the geometrical distance for 
the establishment of the velocity field around the whole sphere is of the order of the 
radius of the sphere a (instead of d ) ;  this gives another condition in this limit 

a2/v  4 d / U x  

or Re G e. (3.7) 

This relation (3.7) is also given by Cooley & O’Neill (1969). 
In  conclusion, we expect that inertial terms due to  convective and local accelerations 

caused by the changing geometry can be neglected if both relations (3.6) and (3.7) 
are satisfied. We will see that the conditions are fulfilled in the present experiments. 
The use of, say, larger objects moving at the same velocity would permit a study of 
such non-stationary terms. 

3.2. Method and experimental results 

We have used the set-up described in 92. The cylindrical tube has a flat horizontal 
bottom and moves at  a constant velocity - U ,  while the sphere is kept fixed along 
the central axis of the cell. The cell is filled with silicone oil up to a level much higher 
than that of the sphere to make free-surface effects negligible. The position d = ea 
of the sphere with respect to the plane is obtained, a posteriori, from the known 
velocity of the tube and from the instant of ‘contact’ between the sphere and the 
plane a t  which the force diverges ; this time can be deduced from an extrapolation 
of the force increase using the asymptotic relation (3.4). Thus d is determined with 
an accuracy U, At where At = 0.02 s is the time unit of data acquisition of the 
multichannel analyser used in the experiment. 

Far from the plane, the Stokes hydrodynamic force must be corrected for the effect 
of the lateral walls of the cylindrical cell of radius R (2a = 0.87 mm and 2 R  = 10 mm 
in the experiment) : 

(3.8) 
( a )  
R 

Fx(oo) = Ao-Fs, 

where Fs is the bulk Stokes force (2.1). Near the plane, (3.1) must be replaced, using 
(3.8), by 

F X ( 4  = S ( E )  %(a). 

On figures 5(a ,  b )  we have plotted the theoretical variation of S ( e )  calculated from 
the exact expression (3.2). On t)he same figures, we also show our experimental results, 
corresponding to  values of e in the range 1.9 x lop2 < e < 1.15 and to  a velocity 
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FIGURE 5. The drag force on the sphere normalized to the Stokes value F,(e)/(6n7aUZ) is plotted 
versus the reduced distance to the horizontal wall e = d/a.  The curve shows the increase of the 
force due to lubrication as the sphere approaches the wall. ---, theoretical curve (a) 0, 
experimental values for Re = U,a/u - 2.9 x u = m2 s-l (silicone oil 47VlOO), 
U, = 6.7 x m s-l, a = 0.435 mm. (b) 0, experimental values for Re = 1.45 x 
v = m2 s-l; U, = 3.5 x m s-l; a = 0.435 mm. 
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m s-l for figure 5 ( a )  to the values of 1.8 x 
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CTx = 6.7 x < G < 0.66 and to a 
velocity U, = 3.3 x 

The Reynolds numbers Re = U, a / v  respectively equal to 2.9 x lop4 and 1.45 x lop4 
are sufficiently small and allow satisfaction of the two relations (3.6) and (3.7); thus 
the quasi-static approximation is justified. The smallest value of c corresponds to 
dmin = 8 pm and to a value of the ratio a(€) = 54 times that taken a t  infinity; it still 
fulfils condition (3.7). 

We also note that the London-Van der Waals attractive forces are completely 
negligible a t  these large distances, compared with the hydrodynamic ones. 

The agreement between theory and experiment is excellent, as can be seen on figures 
5(a ,  b ) .  It was verified for a number of experiments with variable but small Re 
obtained by varying U, or u.  The results can be compared with those obtained by 
Mackay & Mason (1961), Mackay, Suzuki & Mason (1961) and Yuu & Fukui (1981). 
A major difference between these results and the present ones is the fact that we 
impose well-defined hydrodynamic conditions (in particular, Re is constant in the 
experiment up to the contact) whereas the previous works with an imposed external 
force = &a3(p, - p )  g (apparent weight of the sphere of density p,) have a continuously 
variable Reynolds number from Re, far from plane to Re = 0 a t  the contact. 
However, when Re, is small and $(a3/uZ) (p , -p)  g/p << 1 as given by Cooley & O’Neill 
(1969) we find similar results with both types of studies. 

We intend to broaden the comparison beyond the quasi-static approximation by 
using magnetic particles embedded in spheres with a larger radius a.  The inertial 
effects met in the present problem and resulting from the presence of both convective 
and local acceleration terms in the complete Navier-Stokes equations must be studied 
a t  a fixed Reynolds number as the sphere approaches the plane. This condition can 
only be realized by the present experiment. If the force is imposed, the Reynolds 
number decreases to zero when the sphere approaches the wall because the force F, 
goes to infinity in the lubrication limit. 

m s-l for figure 5 ( b ) .  

4. Off-axis motion of a sphere in a fluid-filled cylindrical tube 
In  this study, we consider the variation of the hydrodynamic force exerted on a 

sphere positioned eccentrically within a cylindrical tube filled with Newtonian fluid 
and translating along the axial direction without rotation. 

4.1. Formulation of the problem and experimental results 

The parameters of the experiment are given on figure 6. The study is made as a 
function of the two dimensionless variables: the reduced radius k = a / R  of the sphere 
and the eccentricity e = e /R  of the sphere trajectory. 

The eccentricity ratio e varies from 0 along the cylinder axis t o  emax = 1 - k as the 
sphere touches the sidewalls. The position is controlled by the current sent into the 
pair of coils (Cl, C,) as described in $2.2. The tube is displaced vertically at a constant 
velocity U, = 6.7 x m s-l in all the experiments. The velocity is small enough 
so that the flow takes place in the Stokes regime (Re - 

In  figures 8 (a-e) we give the experimental results of the force F,(e, k), normalized 
to its value measured on the axis, F,(O,k), for two spheres (Za = 1 mm and 
2a = 0.87 mm) as a function of e ,  for different reduced radii k = 0.12 (8a ) ,  0.17 ( 8 b ) ,  
0.29 (8c), 0.44 ( 8 4 ,  0.6 (8e).  

The experimental set-up has already been described in $2. It uses a magnetic sphere 
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FIGURE 6. Sketch of the experimental geometry for the off-axis motion of a 
sphere along a fluid-filled cylindrical tube of radius R. 

of radius a kept in a fixed position in vertical glass tubes of different diameters 2R 
(10, 5, 3 ,  2 and 1.45 mm) filled with silicone oil. 

4.2. Comparison with theory 

This study provides a direct check on various theoretical models which have not yet 
received a direct experimental assessment. It also goes beyond the range of applica- 
tion of these analyses. In  fact, a theoretical analysis of this problem showing a 
decrease of the force away from the axis, which we observe experimentally, had been 
made long ago by Brenner & Happel (1958, 1973). Their calculation, using the 
method of ‘reflections ’ which is valid for k 6 1, led to the following expression : 

with 
F,(e,k) = 6nyaU,[ l+kj(e)+ . . . I ,  

f ( e )  = 2.10444-0.6977e2+O(e4). 

This expansion is valid for eccentricities e + O  (near the cylinder axis). The function 
f ( e )  has been calculated as a power series in e ,  and tabulated by Happel & Brenner 
(1973) and Famularo (1962). Their results indicate that the drag experienced by a 
small sphere translating at a fixed velocity in a quiescent fluid does not increase 
monotonically as we proceed outward from the cylinder axis towards the wall. Rather, 
it attains a minimum value at e z 0.4.  At a larger distance from the wall (e  z 0.55), 
i t  recovers the value it has on the axis of the tube. Similar results are obtained in 
the present experiment for a large range of values of the reduced radii k .  
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FIGURE 7 .  The function lA2(k) l /Ao(k)  calculated from Tozeren’s results (Ao(k )  is given in table 1 and 
A,(k)  in table 4 of Tozeren (1983) is plotted versus the reduced radius k = a /R .  

On the other hand, the frictional torque f, (about the sphere centre) experienced 
by the sphere is an odd function of e .  This is physically obvious since the sphere will 
tend to  rotate in a direction opposite to its original direction and a t  the same angular 
velocity when it is placed symmetrically with respect to the cylinder axis. The torque 
is given by the following expression (Happel & Brenner 1973) : 

f, = 87cqa2U, k2g(e),  (4.3) 

with g ( e )  = 1.296e+O(e3) for e+O. (4.4) 

Near the axis the sign of r, corresponds to a positive sign of the rotation for the 
configuration of figure 6. This can be understood physically by stating that the 
backflow accompanying the motion of the sphere, which is more important in the 
wider gap symmetric to the off-centring of the sphere, controls the sign of the rotation 
of the sphere. This argument also suggests a reason for the decrease of the force away 
from the centre : this situation is more favourable to a decrease in the drag force, as i t  
provides a larger space for the backflow of the liquid in the centre part of the cell. 

Results similar to those of Brenner for the force were also obtained using a different 
method by Hasimoto (1976). The solution of the Stokes equations of motion reduces 
to a simple boundary-value problem for three harmonic functions. 
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FIQURE 8. For caption see p. 248. 



Wall effects on a sphere translating at constant velocity 

1 

e 

247 

e 

FIGURE 8. For caption see p. 248. 



248 A .  Ambari, B. Gauthier-Manuel and E .  Guyon 

0.5 
I 

0.5 
I 

e 

FIGURE 8. The curves in the figure show the variation of the drag force F,(e, k )  (normalized to its 
value measured on the axis Fz(O, k ) )  exerted on a sphere moving at, the same constant velocity as 
a function of the eccentricity e and of the normalized radius k.  ---, the theoretical curves indicated 
by B and T correspond respectively to Brenner's (1958) and Tozeren's (1983) theories ; . . . , the 
experimental points correspond to  the following parameters: U, = 6.7 x m2 s-l 
(silicone oil 47V100). (a )  k = 0.12 for a sphere of diameter 2a = 1 mm and tube of diameter 
2R = 10 mm; ( b )  k = 0.17, 2a = 0.87 mm, 2R = 5 mm; (c) 0.29,0.87 mm, 3 mm; ( d )  0.44,0.87 mm, 
2 mm; ( e )  0.60, 0.87 mm, 1.45 mm. 

m s-l; v = 

A more complete analysis was done recently by Tozeren (1983) using a perturbation 
solution on e < 1 but using finite k-values (up t o  k = 0.7).  The results can be 
summarized using the following expression : 

(4.5) Fx(e, k )  = 6~yaU,[A,(k)+A,(k)e'+ ...I, 
valid for e+O. 

The values A,(k) for a sphere falling along the axis of a cylinder given by Tozeren 
agree with those given by Haberman & Sayre (1958). The values of A,(k) are negative, 
which expresses the decrease of the force away from the axis. 

We compare our results with those of Tozeren by calculating the ratio 

and plotting it on figure 8. 
The function lA2(k)l/Ao(k) (figure 7 )  increases with k as found experimentally. Thus 

we see that our results reproduce quantitatively the variations of (4.1) valid over a 
large range of e but for small reduced radii k and those of (4.5) for small eccentricities 
e but for a large range of values of k ;  they also extend these results for arbitrary e 
and k, in particular when the sphere approaches the wall. 

To discuss the results in this limit, i t  is worthwhile to  consider the effect of the 
horizontal component of the force F,, which we have neglected by assuming that the 
position of the sphere was fully determined by the value of the horizontal field. 
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The horizontal force I$ induced by inertial effects on a sphere moving with a 
constant velocity without rotation in a tube has been obtained theoretically by 
Shinohara & Hasimoto (1979) : 

Fy = iqaU,Reh(e); (4.7) 

h(e) is expressed by infinite series. 
The sphere is always found to be pushed towards the axis of the cylinder; the 

magnitude of Fy is proportional to e when e is sufficiently small, and has a maximum 
value near the wall. The expression of Fy is also given by Fax& (1921) in the Oseen 
approximation and in the limit k+O (plane wall). 

Fy is small in our experimental conditions (2a = 0.87 mm or 1 mm and Re - lop3) 
over most of the range of e ,  except possibly in the lubrication regime ( e  N emax);  as 
the horizontal stability is ensured by the magnetic coils (Cl, C2), we have neglected 
the effect of Fy. We have indeed verified from the differential signal between the 
photodiodes, described in $ 2 . 2 ,  that there was no appreciable horizontal displacement 
of the sphere when the motion was established. 

Let us now examine the rotational motion of the sphere. The torque I', experienced 
by a slightly off-centred sphere can be calculated from (4.3) and (4.4) in the limit 
k + 1 .  In  the general ease where I% is not small, an expansion in powers of k ,  valid 
for e --f 0, has been given by Tozeren (1983) : 

r, = 8 ~ q a 2 ~ , ~ ( l c ) e + ~ ( e 3 ) .  (4.8) 

,4 (k)  is given by Tozeren (1983) (table 2) for lop3 < k < 0.7.  
In all cases. the sphere experiences a positive torque in to the configuration of 

figure 6. When calculated for the most-unfavourable case (i.e. k = 0.6), the hydro- 
dynamic torque is still smaller than that when the sphere is near the lateral wall 
(e+e,, ,) .  I n  the latter case, a calculation by Bungay & Brenner (1973) in the 
conditions k + 1 give an asymptotic expression for the torque : 

In this lubrication limit the torque is negative : it tends to rotate the sphere in the 
direction of rolling along the lateral wall as in the case of a sphere moving parallel 
to a plane (Ambari et al. 1983). 

I n  the most-unfavourable conditions k = 0.6 and elemax = 0.99 with 2a = 0.87 mm 
and U, = 6.7 x low4 m s-l we get r, = 2 x lows N m, which is 2 orders of magnitude 
less than the magnetic torque f, = 2 x lop6 N m (see $2.3). Thus the relative 
translation of the sphere takes place without any appreciable rotation, because the 
hydrodynamic torque can be easily compensated by the restoring torque f,. 

Let us now consider the variation of the force experienced by the sphere as it gets 
closer to the sidewalls. On figure 8 we see that the minimum of the force shifts from 
e - 0.4 for k = 0.12 (figure 8 a )  to e = 0.25 for k = 0.6 (figure 8 e ) .  A similar shift is 
obtained on the position of intercept of the force curve with the horizontal axis. 
Beyond this point, the force F,(e, k )  normalized to F,(O, k )  increases above unity owing 
to lubrication. The maximum of the reduced force decreases as k increases towards 1 .  
This decrease is due to the fast increase of the denominator F,(O, k )  with k ;  actually. 
F,(e, k )  also increases with k as k+ 1 .  The force F, appears to saturate to a finite value 
as e + emax (a result already obtained in the case of a plane wall ; see figure 10 below). 
In  figure 9, this maximum force has been normalized to F,. The normalization has 
been made using h,(k) (see (4.5)), which is known theoretically from the work of 
Haberman & Sayre (1958) and which we have also measured in independent 
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FIQTJRE 9. The maximum of the drag force F,(e, k), obtained experimentally for e - emax = 1 - k 
and normalized to the Stokes force, plotted versus k = a / R  shows the effect of the curvature of 
the wall in the lubrication limit. The open-square data have been obtained independently by Ambari 
et al. (1983). 

experiments. Figure 9 expresses the fact that the curvature of the lateral wall tends 
to increase the drag on the sphere next to it. We also note that the extrapolation 
of the ratio F(e - e,,,, k) /F,  to k = 0 is very close to that obtained in the case of 
a sphere moving parallel to  a wall. This case has been studied previously by us 
(Ambari et al. 1983), and the results are reproduced on figure 10. 

Finally we note that the present results can be compared qualitatively with the 
observations made by Christopherson & Dowson (1959), by the authors quoted in 
Bungay & Brenner (1973) and by M. C. Anselmet and R. Rlanc (private communic- 
ation). These observations on a free-falling sphere in a cylindrical tube also show that 
the sphere gets off-centred from the cylinder axis. It also rotates in a direction 
opposite to that very near the wall which would correspond to a sphere rolling without 
sliding against the wall. 

We note, however, that  the migration away from the axis of the cylinder is in 
opposite direction from that given by the lateral force Fy discussed above ((4.7)) due 
to inertial effects. It is also of a sign opposite to the transverse force FL induced by 
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FIGURE 10. The figure gives the value of the vertical force I?% exerted on a sphere near a wall and 
normalized to the Stokes force far from it. The distance is measured by the lubrication ratio e = d/a.  
The geometry of the experiment and coordinate system is given schematically (A, silicone oil 
47V100, u = m2 9-l) ; Re - lov3. The experimental 
points depart from the exact solution which O'Neill obtained in the absence of rotation. The 
saturation effect could be due to the rotation of the sphere when the magnetic torque can no longer 
balance the hydrodynamic one which diverges as e+e,,, (cf. 4.9). The agreement with the 
approximate solution of Faxen obtained by a reflection method is probably fortuitous. 

m2 s-l; 0 ,  silicone oil 47V20, u = 2 x 

the spinning of the falling sphere in the positive direction of figure 6. This force was 
expressed by Rubinow & Keller (1961) as 

FL = na3pS1 x U,[l +O(Re)] ,  (4.10) 

where Sa is the angular velocity; FL is directed towards the axis. 
The physical explanation of the migration force has its origin in the backflow 

induced by the motion of the sphere, which is limited by the lateral walls of the 
cylinder tube. The backflow was observed in the reference frame of the cylinder as 
a vortex ring around the sphere by Coutanceau (1968) (figure 3-5). This vortex gets 
asymmetric when the sphere moves sideways in such a way as to minimize viscous 
dissipation in this low-Reynolds-number case. The motion of the sphere away from 
the centre in the experiments under an imposed force field must have the same origin 
as the decrease of the vertical force we have observed in our experiments. 

5. Conclusion 
The present experimental work has made use of an original viscometer using a 

sphere moving at a fixed velocity relative to a liquid and measuring the force exerted 
on the sphere. We have studied two types of interaction of a sphere with a solid 
surface. In the unsteady problem of a sphere moving towards a plane wall, we have 
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found an increase of the Stokes force due to lubrication effects, in agreement with 
theoretical models formulated for this problem. An interesting extension, not possible 
with conventional experiments where the force on a sphere is imposed, would be to 
study time-dependent (Basset-integral) inertial effects ; this is a realizable extension 
of the present work. The second experiments deal with the stationary motion of a 
sphere parallel to the axis of a cylindrical tube. The results confirm theoretical 
findings which show a decrease of the Stokes force away from the centre of the tube, 
the existence of a minimum and a further increase when the sphere approaches the 
sidewalls, In this limit they also show the effect of the wall curvature with respect 
to the motion parallel to a flat wall. In this geometry our results extend the range 
of variation of the variables of the theories. In our experiment the rotation of the 
sphere was negligible, but one should be able to measure the torque exerted on the 
magnetic sphere if i t  were larger. 

The experiments are of direct relevance to practical problems of motion of 
suspended solid objects in limited geometries. They also illustrate some of the basic 
problems in the hydrodynamics of suspensions : the lubrication effects which control 
the relative approach of spheres in shear flows, or the backflow effect which causes 
the decrease of the sedimentation velocity of a finite concentration of spheres. More 
direct applications of the present apparatus to the hydrodynamics of suspensions can 
be designed easily: unsteady motion of a sphere parallel to or towards another 
spherical object; drag force on a particular sphere sedimenting in a fixed bed (the 
magnetic sphere having its position controlled magnetically while the other spheres 
are held fixed mechanically with very thin threads), or in a bed of freely sedimenting 
particles around the control sphere. Another possibility (indicated by a referee) is to 
study the approach of a sphere to a horizontal free surface or interface (see Lee, 
Chadwick & Leal 1979; Lee & Leal 1980; O’Neal & Ranger 1983). We had indeed 
tried such an experiment, but there are difficulties due to the deformation of the 
surface as the sphere approaches it, which is controlled by the crispation effect. It 
is the hope of the authors that the present work will stimulate interactions with the 
community of fluid-mechanicians studying heterogeneous matter to define crucial 
projects around a very versatile tool of experimentation. 
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